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data mining, and training of artificial intelligence and similar technologies.

Security vulnerabilities have become increasingly 
critical with the growing connection of Internet of 
Things (IoT) devices and industrial control sys-
tems to 4G/5G private networks (PNs). Attacks in 

such environments are often complex and diverse, 
requiring advanced and adaptive detection mechanisms. 

However, conventional detection systems, which typical-
ly rely on the core network, incur high costs, introduce 
latency, and lack adaptability. The open radio access net-
work (O-RAN) architecture provides a flexible and cost-
effective framework by decoupling hardware and 
software components. This article presents a novel solu-
tion, the O-RAN advanced information security sharing 
system (O-RAN AIS3), which integrates federated learn-
ing (FL) to enhance detection capabilities. Detection 

LOW-RATE DENIAL-OF-
SERVICE ATTACK 
DETECTION IN OPEN RADIO 
ACCESS NETWORK
Integrating Federated Learning

©SHUTTERSTOCK.COM/BEEBRIGHT

Cheng-Feng Hung , Chui-Chen Kuo, 
and Shin-Ming Cheng

Digital Object Identifier 10.1109/MVT.2025.3623298 

Date of publication 10 November 2025; date of current version 24 December 2025

Authorized licensed use limited to: National Taiwan Univ of Science and Technology. Downloaded on December 26,2025 at 03:18:17 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-1771-2261
https://orcid.org/0000-0002-9796-0643


76 |||  		  IEEE VEHICULAR TECHNOLOGY MAGAZINE  |  DECEMBER 2025

models are deployed in near real-time RAN intelligent 
controllers (Near-RT RICs) in diverse deployment scenar-
ios and are periodically updated through parameter 
sharing. A Y1 consumer aggregates parameters from mul-
tiple Near-RT RICs, enabling knowledge synchronization 
across diverse network environments. This collaborative 
learning approach enables cross-domain knowledge 
sharing, which is essential for addressing the dynamic 
nature of attacks in PNs and optimizing the detection of 
emerging threats in real time. We evaluated the effective-
ness of this approach in detecting unseen low-rate and 
high-rate denial-of-service (DoS) attacks, leveraging FL 
for enhanced cross-operator security. The dataset, col-
lected in an emulated PN environment, included traffic 
generated from 11 distinct attack types, covering both 
low-rate and high-rate scenarios. Experiments conduct-
ed in two 5G O-RAN PN environments demonstrated 
improved detection accuracy in both cases. These 
results underscore the effectiveness of FL-based systems 
in addressing the increasing complexity of malicious 
behaviors in operational PNs.

Introduction
As an increasing number of IoT devices, user equipment 
(UE), and industrial control systems connect to 4G/5G 
PNs, the security challenges facing telecom networks 
have become increasingly severe [1], [2]. Relying exclu-
sively on intrusion detection systems and core network 
components, such as the user plane function for traffic 
analysis and attack detection has several limitations. 
This approach often requires vendor-specific updates 
and adjustments, incurring high costs and operational 
delays. Furthermore, it constrains the network’s capabili-
ty to apply fine-grained security policies in response to 
real-time threats. To promote openness in telecom infra-
structure and reduce vendor lock-in, the O-RAN Alliance 
was established in 2018 by a consortium of telecom oper-
ators, equipment vendors, and research institutions [3]. 
O-RAN standardizes interfaces to enable third-party 
development of interoperable white-box hardware and 
software [4]. O-RAN not only decouples traditional base 
stations into the O-RAN central unit (O-CU), O-RAN dis-
tributed unit (O-DU), and O-RAN radio unit (O-RU), but 
also introduces the RIC, which leverages artificial intelli-
gence/machine learning (AI/ML)-based services to opti-
mize operations [5]. By dynamically adjusting policies 

based on the real-time status of RAN components, 
O-RAN enhances network management flexibility and 
operational efficiency [6].

With the decoupling of base stations in the O-RAN 
architecture, O-CU and O-DU can transmit the col-
lected packet data to the Near-RT RICs via the E2 inter-
face and collaborate with the non-RT RIC for training 
and analysis while utilizing FL and deep reinforcement 
learning (DRL) frameworks to enhance malicious at-
tack detection [5], [7], [8]. Houda et al. [9] and Sheikhi 
and Kostakos [10] integrated FL and deep learning to 
detect jamming and IP spoofing attacks, improving 
model convergence, and enhancing 5G intrusion detec-
tion. Rumesh et al. [11] used FL in a network digital twin 
(NDT) framework for anomaly detection, surpassing 
traditional classifiers in detecting user datagram proto-
col (UDP) distributed DoS (DDoS) and bandwidth hog 
attacks. The variability of attack patterns across do-
mains and telecom operators complicates the develop-
ment of generalized defense mechanisms, particularly 
for identifying low-rate DoS attacks [12]. To address 
this challenge, collaborative learning across domains 
is essential for sharing threat intelligence and enhanc-
ing detection accuracy [13]. FL offers a privacy-pre-
serving solution by enabling each domain to retain its 
data locally while sharing only model parameters. This 
approach not only mitigates the privacy and security 
concerns associated with centralized learning (CL) but 
also reduces bandwidth consumption and aligns with 
the CIA security principles, making it well-suited for 
distributed and heterogeneous O-RAN environments.

In this article, we propose integrating the O-RAN ar-
chitecture with FL to improve detection capabilities, 
hereafter referred to as the O-RAN AIS3. A local logistic 
regression (LR) model is deployed in the Near-RT RIC 
via xApp, facilitating real-time monitoring and anomaly 
detection. Near-RT RICs periodically update and trans-
mit parameters to the Y1 consumer, utilizing the feder-
ated averaging (FedAvg) algorithm, which aggregates 
parameters from multiple Near-RT RICs to update the 
model weights. The updated parameters are then syn-
chronized to the Near-RT RICs in each field. This ap-
proach enables the exchange of diverse attack patterns 
and detection capabilities across different environ-
ments, enhancing overall network security. To evaluate 
the effectiveness of FL in attack detection, we set up 
two 5G O-RAN experimental environments. The first 
environment is configured for high-rate DoS attacks, 
while the second is configured for low-rate attacks. We 
constructed a custom dataset by executing real-world 
attacks in a PN testbed. The dataset includes 10 types 
of high-rate DoS attacks: Internet control message pro-
tocol (ICMP) flood, TCP SYN, ACK, FIN, and RST floods, 
UDP, DNS, NTP, SNMP, and TFTP floods, as well as one 
low-rate attack based on the Slowloris technique. This 

This collaborative learning approach 
enables cross-domain knowledge sharing, 
which is essential for addressing the 
dynamic nature of attacks in PNs and 
optimizing the detection of emerging 
threats in real time.
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dataset enables simulation and analysis of diverse at-
tack traffic in PNs, providing a realistic basis for evalu-
ating detection performance under both high-rate and 
stealthy low-rate conditions. We compare FL-based 
and CL models to assess the impact of parameter shar-
ing on detection accuracy. Experimental results show 
that the first 5G O-RAN PN effectively detects previ-
ously unseen low-rate DoS attacks, while the second 
identifies previously unseen high-rate attacks, thereby 
validating the feasibility of FL-based cross-domain de-
tection in O-RAN.

Background and Related Work

O-RAN Architecture
	■ Near-RT RIC: The Near-RT RIC communicates with the 

RAN via the E2 interface to manage E2 nodes, such as 
the O-CU and O-DU, as illustrated in Figure 1. The col-
lected data are stored in the shared data layer, 
enabling xApps to access it for AI/ML-based RAN opti-
mization [5], [7]. The Near-RT RIC also supports Y1 
consumers, which subscribe to shared data layer data 
via the Y1 interface [5]. These consumers can aggre-
gate data from multiple Near-RT RICs, providing broad-
er network insights and enhancing the adaptability of 
AI/ML models [6]. Optimized results are fed back to 
the Near-RT RIC to improve RAN adaptability and 
resource orchestration [3].

	■ Y1 consumer: Y1 consumer applications within the 
O-RAN architecture access RAN analytical informa-
tion from the Near-RT RIC via the Y1 interface [5], 
[13]. They use near real-time network analysis to 

optimize performance, enhance user experience, or 
formulate strategies. Y1 consumers actively sub-
scribe to or query specific RAN data from the Near-
RT RIC, such as key performance indicators (KPIs), 
event alarms, and predictive analytics. They then 
promptly acquire the required information through 
the Y1 interface. This enables them to rapidly 
respond to network changes, adjust resource alloca-
tion, and improve efficiency.

	■ O-CU: O-CU handles base station functions, such as 
radio resource control (RRC), service data adaptation 
protocol (SDAP), and packet data convergence proto-
col (PDCP) [6], including RRC signaling at layer 3 and 
user data at layer 2. SDAP maps quality of service 
flows to data radio bearers to meet requirements. 
PDCP manages user data transmission and reception, 
including integrity, encryption, compression, reorder-
ing, and sequencing, to improve efficiency and mobili-
ty. RRC configures wireless connections for 
communication. O-CU connects to the Near-RT RIC via 
E2, providing monitoring of UE traffic, quality of ser-
vice, and handovers, and receiving control commands 
for resource management [3], [8].

	■ O-DU: The O-DU executes key layer 2 functions, includ-
ing radio link control (RLC) for data transmission, 
medium access control (MAC) for resource allocation, 
and PHY-high for modulation and error control [6]. It 
interfaces with the Near-RT RIC via E2 [8], the O-CU via 
F1, and the O-RU via the open fronthaul, thereby sup-
porting coordinated network operations.

	■ E2 interface: The E2 interface is specified by the 
O-RAN Alliance to connect the Near-RT RIC with E2 
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Figure 1  Overview of O-RAN architecture with O-RAN AIS3.
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nodes, such as the O-CU and O-DU, as shown in Fig-
ure 1. It enables the Near-RT RIC to collect data from 
E2 nodes, supporting network optimization, resource 
allocation, and management [7], [8]. O-RAN WG11 rec-
ommends using Internet protocol security to protect 
E2 traffic [14].

	■ Y1 interface: The Y1 interface is a critical communica-
tion channel in the O-RAN architecture that connects 
the Near-RT RIC and Y1 consumer, as shown in Fig-
ure 1. The Y1 interface adopts TCP to ensure reliable 
data transmission, uses transport layer security (TLS) 
to guarantee communication security and integrity, 
employs HTTP/HTTPS at the application layer to facili-
tate communication and integration, and applies the 
lightweight JSON format for data representation [13]. 
Combining these protocols, the Y1 interface provides 
a secure and efficient communication channel 
between the Near-RT RIC and the Y1 consumer. Its 
functionalities enable Y1 consumers to subscribe to 
updates or query specific RAN analytical information, 
such as KPIs, event alarms, and predictive analytics. 
This supports network performance optimization and 
resource allocation adjustments.

O-RAN Security Threats
Compared with traditional 4G networks, O-RAN enhanc-
es flexibility and scalability through open interfaces and 
disaggregated components. This openness, however, 
enlarges the attack surface and strains legacy defenses. 
Adversaries can embed malicious commands in seeming-
ly legitimate traffic to evade intrusion detection systems, 
and O-RAN’s distributed control and multisite deploy-
ments expose networks to coordinated DDoS. Recent 
studies analyze malicious traffic and propose O-RAN–
tailored defenses. Houda et al. [9] combine FL with deep 
reinforcement learning to detect and mitigate jamming, 
addressing data scarcity and convergence while optimiz-
ing resource usage; the focus remains on physical/

MAC-layer interference. Sheikhi and Kostakos [10] 
employ unsupervised FL with a long short-term memory 
(LSTM) backbone to enhance intrusion detection for 
packet forwarding control protocol (PFCP) and IP spoof-
ing, improving detection under privacy constraints but 
centering on control-plane anomalies. Rumesh et al. [11] 
introduce an NDT to pretrain models for Near-RT RIC 
deployment, where an FL-based detector outperforms 
traditional classifiers on UDP volumetric DDoS and band-
width-hog traffic; the evaluation emphasizes high-rate 
behaviors within a single-operator scope. Collectively, 
these works confirm FL’s promise for O-RAN security, yet 
most target high-rate attacks that are more tractable to 
detect and mitigate, leaving low-rate DoS comparatively 
underexplored in O-RAN.

Low-rate DoS depletes server resources not through 
volume but by sustaining long-lived, low-throughput 
connections or by slowly transmitting protocol ele-
ments. Representative types include slow headers 
(Slowloris-like partial or throttled headers), slow bodies 
(R.U.D.Y./slow POST with trickled payloads), slow reads 
(receiver-window throttling that forces server-side buff-
ering), and low-frequency bursts that trigger timeouts 
while remaining below volumetric thresholds [15]. These 
behaviors share consistent footprints: long flow dura-
tion, sparse and high-variance interarrival times, low 
packet and byte rates, small payloads, and pronounced 
active/idle cycles. They resemble benign long sessions 
and therefore weaken the effectiveness of signature- and 
rate-based rules. These factors make LR-DoS detection 
in O-RAN PNs particularly challenging, as operators face 
both subtle traffic footprints and strict constraints on 
observability and data sharing.

Comparison With Similar Approaches
As summarized in Table 1, prior O-RAN FL defenses dif-
fer from our design across several operational dimen-
sions. Houda et al. [9] aggregate at the Non-RT RIC and 

Table 1  Comparison with related works.

Work Domain 
Collaboration 
Scope 

Aggregator 
Placement 

Attack Coverage 
(LR-DoS?) Observability 

Stability 
under  
non-IID Algorithm 

Houda  
et al. [9] 

O-RAN Intraoperator Non-RT RIC Jamming (no) Radio/KPIs (no 
payload)

— FL + DRL

Sheikhi and 
Kostakos [10] 

5G Intraoperator Cloud/external PFCP/IP  
spoofing (no)

Control-plane 
sequences

— Unsupervised 
FL + LSTM

Rumesh  
et al. [11] 

O-RAN Intraoperator Hierarchical: 
Near-RT RIC " 
Non-RT RIC

UDP DDoS, 
bandwidth  
hog (no)

KPIs (NDT) — FL + LSTM

This article O-RAN Cross-operator Y1 consumer ICMP/TCP/UDP 
floods;  
Slowloris (yes)

Flows at 
O-CU/Near-RT 
RIC

Standard-
sharing 

FL + LR

non-IID: nonindependent and identically distributed; Standard-sharing: presharing per feature mean/standard before training; Y1 consumer: a cross-operator service end-
point for model aggregation.
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mitigate jamming from radio KPIs. Sheikhi and Kostakos 
[10] detect PFCP/IP spoofing with control plane 
sequences at a cloud server. Rumesh et al. [11] address 
volumetric UDP and bandwidth-hog anomalies using 
KPIs within an NDT with hierarchical RIC aggregation. 
These efforts remain confined to intraoperator collabo-
ration and emphasize high-rate attacks that are easier 
to flag by throughput metrics, while low-rate DoS is not 
explicitly considered.

By aggregating at a Y1 consumer, we enable cross-
operator federation without reliance on any single RIC. 
Our system detects both low-rate DoS attacks (e.g., Slow-
loris) and high-rate DoS attacks using flow-level features 
available at the O-CU and Near-RT RIC, and it stabilizes 
training under nonindependent and identically distrib-
uted (non-IID) traffic through cross-operator feature 
standardization. In practice, these design choices break 
operator data silos, close the LR-DoS gap left in prior 
work, and respect privacy and bandwidth constraints 
while supporting real-time detection in heterogeneous 
O-RAN deployments. These design choices illustrate 
our key contributions to collaborative intrusion detec-
tion in O-RAN.

O-RAN AIS3
This article proposes the O-RAN AIS3 to enhance security 
intelligence sharing across PNs and telecom operators, as 
illustrated in Figure 1. Many IoT 
devices lack rigorous security valida-
tion, rendering them susceptible to 
embedded malware or backdoors 
during deployment. Once compro-
mised, these devices can be exploit-
ed to launch internal attacks, 
potentially resulting in system fail-
ures. Malicious traffic passes 
through the O-RU, O-DU, and O-CU 
before reaching the target UE. As 
specified by O-RAN WG11, wireless 
environments are vulnerable to radio 
jamming (threat ID: T-RADIO-01) [14], 
which highlights the need to address 
both end-device intrusions and PHY/
MAC-layer threats.

In this article, we assume a 
trusted FL setting, where both the 
Y1 consumer and the participating 
Near-RT RICs operate honestly and 
follow the prescribed protocol. O-
RAN AIS3 captures packets as they 
enter the O-CU and converts them 
into network flow data. The system 
then sends these flows to the Near-
RT RIC via the E2 interface for lo-
calized detection and analysis of 

malicious traffic. As shown in Figure 1, once the Y1 con-
sumer subscribes to the Near-RT RICs in PN A and PN B, 
each RIC performs preliminary local detection and model 
training. Each RIC sends its detection results and model 
parameters (weights wi  and bias b) to the Y1 consumer 
through the Y1 interface for global model aggregation. Af-
ter updating the global model, the Y1 consumer redistrib-
utes the optimized parameters to the subscribed RICs, 
enabling PN A to identify low-rate DoS attacks and PN B to 
detect high-rate DoS attacks. This collaborative process 
supports real-time threat detection and mitigation within 
each local network.

FL Model Parameter Exchange
According to the Y1 interface application protocol spec-
ification [13], we design a subscription and transmis-
sion mechanism that complies with the standard. The 
parameter exchange procedure is illustrated in Figure 2. 
Initially, the Y1 consumer sends an HTTP POST request 
to the Near-RT RICs to subscribe to RAN analytics infor-
mation notifications. Upon successful subscription and 
integration with O-RAN AIS3, the Near-RT RICs respond 
with an HTTP 201-created status, completing the sub-
scription process.

To address the non-IID nature of data across PNs, we 
introduce a preprocessing step in which each Near-RT 
RIC shares its local data mean and standard deviation 

Y1 Consumer 

xApp 
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Figure 2  FL parameter transmission in O-RAN AIS3.
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with the Y1 consumer. After aggregating these statis-
tics, the Y1 consumer returns the global average mean 
and standard deviation, enabling consistent data stan-
dardization across all Near-RT RICs. Standardization 
is particularly crucial for models sensitive to feature 
scales. It reduces knowledge disparities and accounts 
for variations in attack traffic. This approach enables 
O-RAN AIS3 to reduce false negatives (FNs) by pro-
viding a more comprehensive view of network flows, 
thereby enhancing detection performance across all 
participating PNs.

Model initialization starts when the Y1 consumer re-
quests initial parameters from PN A at training-round 
zero. The Y1 consumer then distributes these parameters 
to all participating Near-RT RICs. In each subsequent 
round, every Near-RT RIC transmits its updated local 
model parameters back to the Y1 consumer, which aver-
ages them to update the global model. The system repeats 
the procedures illustrated in the blue block in Figure 2 un-
til it completes the specified number of training rounds.

Algorithm of Model
Equation (1) defines the LR algorithm implemented at 
the Near-RT RICs. After each training round, the model 
computes the feature weights wi  and bias b for classifica-
tion. These parameters are used to calculate z from the 
input features ,xi  which is then passed through a sig-
moid function to yield a probability between 0 and 1. 
Inputs with a probability greater than or equal to 0.5 are 
classified as attack, while others are labeled benign, indi-
cating the presence or absence of malicious network 
flows within the PN.

The classification rule for the sigmoid function algo-
rithm is given by

	 ( )z
e

z w x b
1

1 andz i i
i

n

1
v =

+
= +-

=

/ � (1)

where z is calculated as the weighted sum of features, 
( )zv  sigmoid function maps the input z to a probability 

value between 0 and 1, wi  represents the weight associat-
ed with each feature, xi  are the input data of the feature, b 
is the bias term, and n is the total number of features.

In O-RAN AIS3, the LR model comprises two primary 
parameters: coefficients and intercept, corresponding 
to the weights wi  and bias b in (1). During training, the 
coefficients form a 1 × 79 matrix, where 1 represents the 
single output unit for binary classification, and 79 cor-
responds to the number of input features. The intercept 
represents the bias term b. When all feature weights are 
zero, the classification result depends solely on the value 
of b, which directly influences the predicted probability.

After each training round, the participating Near-RT 
RICs send their local model parameters to the Y1 con-
sumer, which applies the FedAvg algorithm while con-
sidering the number of contributors. The Y1 consumer 

then updates the global model and redistributes the 
new parameters to all RICs, ensuring consistent and bal-
anced detection performance across PNs. This process 
strengthens the overall effectiveness of collaborative 
learning.

Evaluation
Our evaluation consists of four main steps:
1)	Dataset construction and non-IID partitioning: PN A is 

exposed only to high-rate attacks, while PN B is limit-
ed to low-rate attacks.

2)	Local model training: Each Near-RT RIC trains an LR 
model using standardized LR features.

3)	Cross-operator aggregation: Parameters are aggregated 
at the Y1 consumer to produce a federated global 
model.

4)	Flow-level testing: The shared test set is evaluated 
using accuracy, precision, recall, and F1 score, as 
defined earlier, with direct comparison against a CL 
baseline under identical settings.
This design allows us to evaluate whether PN A, after 

federation, can detect low-rate DoS attacks it has never en-
countered during training, and whether PN B can likewise 
detect high-rate attacks, thereby demonstrating the benefit 
of cross-operator knowledge sharing in O-RAN AIS3.

Experimental Setup
We deployed three isolated, high-performance infrastruc-
tures to build the experimental environment. Two served 
as PN A and PN B, each containing an O-DU, O-CU, Near-
RT RIC, and a 5G core. The third operated as the Y1 con-
sumer. All setups used identical hardware configurations: 
an Intel i7-12700KF 12-core CPU, 32 GB of RAM, an NVIDIA 
RTX 3060 Ti GPU, a 1.5 TB solid-state drive, and Ubuntu 
22.04.5 LTS. For the software stack, we utilized FlexRIC 
(developed by EURECOM) to implement the Near-RT RIC. 
At the same time, the 5G core and RAN components were 
constructed using the OpenAirInterface (OAI) open 
source platform. We employed Flower 1.14.0, running on 
Python 3.12.8, to establish the FL architecture. Additional 
relevant package versions include scikit-learn 1.6.1, 
NumPy 2.2.1, Pandas 2.2.3, and Matplotlib 3.10.0.

Explanation of Dataset
We used the OAI platform to emulate both low-rate and 
high-rate DoS attacks, along with benign traffic, in an 
O-RAN environment. Using the hping3 tool, we generated 
10 types of high-rate attacks: ICMP floods; TCP floods 
(SYN, ACK, FIN, RST); and UDP-based floods, including 
DNS, NTP, SNMP, and TFTP. For TCP floods, we random-
ized source ports while targeting common service ports 
(e.g., 80, 443). For UDP floods, we randomized only the 
source ports. To create low-rate traffic, we implemented 
Slowloris in Python, opening 700 long-lived HTTP con-
nections to a web server on port 80. Benign traffic was 

Authorized licensed use limited to: National Taiwan Univ of Science and Technology. Downloaded on December 26,2025 at 03:18:17 UTC from IEEE Xplore.  Restrictions apply. 



DECEMBER 2025  |  IEEE VEHICULAR TECHNOLOGY MAGAZINE	 	 ||| 81 

collected by browsing popular social media, e-com-
merce, and video-streaming sites. All traffic was cap-
tured at the O-CU for later processing.

We removed GTP headers and converted packets into 
flows using CICFlowMeter v4.0 (built with jnetpcap 1.4.1 
r1425). We adopted a 70:30 train–test split and main-
tained a benign-attack ratio of 3:2. PN A’s training set in-
cluded 105,000 benign and 70,000 high-rate attack flows 
(175,000 total). In contrast, PN B’s training set included 
105,000 benign and 70,000 Slowloris flows (175,000 total). 
The shared test set consisted of 45,000 benign, 15,000 
high-rate, and 15,000 low-rate attack flows (75,000 total).

This non-IID design exposed PN A only to high-rate 
attacks and PN B only to low-rate attacks, allowing us 
to evaluate whether each PN could detect previously 
unseen attacks after federation within the O-RAN AIS3 
framework. The dataset was collected in a controlled 
testbed rather than a production network, but the at-
tack tools (hping3, Slowloris) and the resulting flow-level 
footprints (long duration, sparse interarrival times, low 
packet rates) closely match those observed in real DoS 
incidents. These traces provide a reasonable proxy, and 
future work will validate the framework using operator-
grade traffic to strengthen real-world applicability.

Implementation
We implemented O-RAN AIS3 using LR, a supervised 
learning algorithm well-suited for binary classification 
of network traffic. LR offered low parameter complexity 
and minimal overhead, enabling efficient flow classifica-
tion within the FL framework, with each decision com-
pleted in under 10 ms. We evaluated model size, 
communication efficiency, and convergence behavior, 
and confirmed that LR delivered competitive perfor-
mance while significantly reducing communication 
costs. Before training, we applied Z-score standardiza-
tion to balance feature influence, avoid numerical 
instability in the sigmoid function, and accelerate con-
vergence. Experimental results showed that standard-
ization substantially improved model stability and 
accuracy. To ensure meaningful parameter aggregation, 
we applied consistent standardization across all local 
models. For this purpose, each participating Near-RT 
RIC shared its local means and standard deviations 
before FL training, as illustrated in Figure 2, which fur-
ther enhanced the performance, stability, and conver-
gence of LR under heterogeneous data distributions.

We configured the LR model with L2 regulariza-
tion (Ridge) to mitigate overfitting and stabilize model 
weights. We selected L2 over L1 regularization because 
it retains all features without reducing coefficients to 
zero. We set the maximum number of iterations (max_
iter) to 50, which proved sufficient based on empirical 
evaluation. Starting from the second training round, we 
enabled the warm_start parameter to preserve model 

weights across rounds, aligning with the iterative nature 
of FL. We chose the saga solver for its scalability, sup-
port for both L1 and L2 regularization, and efficiency in 
handling large or sparse datasets. We set the regulariza-
tion strength (C) to 1, providing a balanced tradeoff be-
tween generalization and accuracy through parameter 
tuning. This configuration enabled the LR model to per-
form robustly, offering resilience to imbalanced traffic 
while maintaining computational efficiency.

We evaluated flow-level classification in a binary set-
ting, distinguishing between benign and attack flows, 
using four standard metrics: accuracy, precision, recall, 
and F1 score. A true positive is an attack flow correctly 
flagged as an attack; a false positive (FP) is a benign flow 
incorrectly flagged as an attack; a true negative is a be-
nign flow correctly identified; and a FN is an attack flow 
missed by the detector. Accuracy measures the propor-
tion of correct decisions among all flows. Precision is 
the fraction of flagged attack flows that are truly attacks, 
while recall is the fraction of actual attack flows that are 
correctly flagged. The F1 score is the harmonic mean of 
precision and recall. Because undetected attacks (FN) 
are critical in security, we emphasize recall, while preci-
sion reflects false-alarm control.

To evaluate the effectiveness of O-RAN AIS3 within the 
FL architecture, we conducted a comparative experiment 
using the same LR model against a CL baseline. We emu-
lated a realistic 5G telecom environment using the OAI 
platform and generated both Slowloris and 10 high-rate 
attack types to represent real-world PN threats. The CL 
results served as a benchmark to assess the performance 
of O-RAN AIS3 under FL. This experimental setup re-
flected the non-IID distribution of attacks across telecom 
networks, enabling a realistic evaluation of the model’s 
adaptability and performance under various conditions.

Accuracy Comparison Between O-RAN AIS3 and CL
The experimental results demonstrate that O-RAN 
AIS3 significantly improves detection performance 
under non-IID data distributions compared to the CL 
baseline. As shown in Table 2, the CL-LR models 

Table 2  Experiment result of CL and O-RAN AIS3.

Model Accuracy Precision Recall F1 Score

CL-LR in  
PN A

81.73% 85.84% 81.73% 80.27%

CL-LR in  
PN B

80% 85% 80% 78.09%

FL-LR 5th 
round

97.94% 98% 97.94% 97.93%

FL-LR 25th 
round

97.97% 98.03% 97.97% 97.96%

FL-LR 50th 
round

97.97% 98.04% 97.97% 97.97%
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trained independently at PN A and PN B achieved 
limited performance due to their restricted exposure 
to diverse attack patterns. Specif ica l ly,  PN A 
achieved an accuracy of more than 80.27% and PN B 
exceeded 78.09% across all metrics, including accu-
racy, precision, recall, and F1 score. These findings 
highlight the limitations of relying solely on local 
data, which constrains the model’s ability to general-
ize to unseen threats.

In contrast, the FL-LR model in O-RAN AIS3 con-
sistently outperformed the CL baseline, surpassing 
97.97% across all metrics after 50 training rounds. Even 
at rounds 5 and 25, the model achieved near-optimal 

performance, demonstrating rapid convergence en-
abled by parameter aggregation and standardized 
feature scaling. Before training, all participating Near-
RT RICs shared their local feature-wise statistics to 
apply consistent Z-score standardization, which en-
sured stable model aggregation across heterogeneous 
data distributions.

Figure 3 shows that the CL-LR models suffered from 
high FN rates, with 13,619 and 15,000 misclassified at-
tack flows in PN A and PN B, respectively. PN A also 
recorded 81 FPs, indicating that the model overfitted 
to its local data. In contrast, the FL-LR model, as illus-
trated in Figure 4, significantly reduced FNs to 1,504, 
lowering misclassifications by 12,115 in PN A and 
13,496 in PN B. It also maintained a low FP count of 15. 
Although PN B experienced a slight increase in FPs, 
the overall error remained low and well-balanced, re-
flecting the improved generalization achieved by the 
global model.

These results show that O-RAN AIS3 combines FL, 
Y1 consumer aggregation, and cross-operator feature 
standardization to handle non-IID traffic in distributed 
PNs. It shares models across operators without expos-
ing raw flows, reduces bandwidth use, and protects 
privacy. The design aligns with the O-RAN vision for 
intelligent, interoperable, and secure RANs and shows 
promise for deployment at multioperator scale. We 
also recognize limits: The dataset comes from an OAI 
testbed rather than a live network, the detector uses a 
lightweight LR core, and the threat scope covers only 
DoS and low-rate DoS. Future work will validate on op-
erator-grade traces, broaden the attack set, and com-
pare against deeper models.

40,000

35,000

25,000

15,000

10,000

Attack

Attack

Normal

Normal

Predicted
(a)

AttackNormal
Predicted

(b)

A
ct

ua
l

5,000

20,000

30,000
44,919

13,619 16,381

81

40,000

35,000

25,000

15,000

10,000
Attack

Normal

A
ct

ua
l

5,000

20,000

30,000
44,999

15,000 15,000

1

Figure 3  Confusion matrix of CL: (a) CL-LR at PN A and (b) CL-LR at PN B.
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Figure 4  Confusion matrix of O-RAN AIS3. Fiftieth round at PN A 
and B.
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Conclusion
This article proposes O-RAN AIS3, integrating FL into 
O-RAN PNs to enhance the detection of malicious traf-
fic. Experimental results demonstrate that, compared to 
CL-LR models trained solely on local data, the FL-LR 
model significantly improves accuracy, precision, 
recall, and F1 score, raising performance in both PN A 
and PN B from about 80% to 97.97%. The FN counts also 
dropped sharply, decreasing from 13,619 to 1,504 in PN 
A and from 15,000 to 1,504 in PN B. O-RAN AIS3 effec-
tively leverages FL to enable collaborative learning 
among Near-RT RICs across domains, allowing the shar-
ing of attack patterns and consistent standardization 
without exposing raw data. This design strengthens 
detection capabilities while preserving data privacy, 
offering a scalable and practical solution for real-time 
threat identification in multioperator environments. 
Future work will investigate broader attack pattern cov-
erage and explore privacy-preserving techniques, such 
as homomorphic encryption and differential privacy to 
enhance model security.
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